
MA 3046
Matrix Algebra

Final Exam - Quarter II - AY 03-04

Instructions: Work all problems. Show appropriate intermediate work for full or partial
credit. Three pages of notes (8 1

2 by 11 inches, both sides, handwritten) permitted. Read
the questions carefully.

1. (35 points) Using the QR method, solve the system:

Ax =




2
2
2
2

1
−7

1
−7


 x =




−2
14
12
12




solution:

In order to solve this by the QR method, we must first find the QR
factorization of A. We could do this by any of several methods, but Gram-
Schmidt is probably easiest. (Note that, in this case, with only two columns,
the classic and modified versions are identical. Also note that, because the
original matrix A is only 4 × 2, this problem is likely only solvable in the
least-squares sense.)

The modified Gram-Schmidt algorithm is:
(1) Form: v(j) = a(j) , j = 1, 2, . . . , n
(2) For j = 1, 2, . . . , n − 1:

Form: rjj = ‖v(j) ‖ and q(j) = v(j)/rjj

For k = (j + 1), · · · , n , do

rjk = q(j)H
v(k)

v(k) = v(k) − rjkq(j)

(3) Finally, form: rnn = ‖v(n) ‖ and q(n) = v(n)/rnn

So, in this problem, we start with

v(1) =




2
2
2
2


 and v(2) =




1
−7

1
−7




1 - 1

solution:

Therefore, for j=1: r11 = ‖ a(1) ‖ =
√

22 + 22 + 22 + 22 =
√

16 = 4, and
so

q(1) =




1
2
1
2
1
2
1
2




Proceeding then to remove the components in this direction from the remaining
vectors, we have, for k = 2,

r12 = q(1)H
v(2) = [1

2
1
2

1
2

1
2]




1
−7

1
−7


 = −6

and so

v(2) = v(2) − (1)q(1) =




1
−7

1
−7


 − (−6)




1
2
1
2
1
2
1
2


 =




4
−4

4
−4




Next, for j = 2,

r22 = ‖v(2) ‖ = 8 and so q(2) = v(2)/8 =




1
2

−1
2
1
2

−1
2




1 - 2

solution:

Therefore, the QR decomposition of the original matrix is:




2
2
2
2

1
−7

1
−7


 =




1
2
1
2
1
2
1
2

1
2

−1
2
1
2

−1
2




[
4 −6

0 8

]

Then, since QH Q = I, the solution of

Ax = QRx = b

is obtained by solving
Rx = QH b

i.e.
[

4 −6

0 8

]
x =

[1
2

1
2

1
2

1
2

1
2

− 1
2

1
2

− 1
2

]



−2
14
12
12


 =

[
18

−8

]

or
4x1 − 6x2 = 18

8x2 = −8 =⇒ x1 = 3
x2 = −1

Note, although not required, this solution can easily be checked. But, in
doing so, it is vital to remember this is a least-squares problem! We can easily
show that 


2
2
2
2

1
−7

1
−7




[
3

−1

]
=




5
13
5

13


 6= b

but

r = b − Ax =




−2
14
12
12


 −




5
13
5

13


 =



−7

1
7

−1




which is obviously orthogonal to both columns of A. Therefore we have the
correct least-squares solution.

1 - 3

2. (40 points) a. Using partial pivoting, and simulating a three-digit decimal computer
that rounds all intermediate calculations, complete the partial PA = LU decomposition
shown (note no row interchanges have been required up to this point):

A =




2 −2 4 2
−1 2 −5 0

1 2 −9 8
1 1 −2 −1


 =




1 0 0 0
−.5 1 0 0

.5 0 1 0

.5 0 0 1







2 −2 4 2
0 1 −3 1
0 3 −11 7
0 2 −4 −2




solution:

Observe that, at this point, we have

Lwork =




1 0 0 0
−.5 1 0 0

.5 0 1 0

.5 0 0 1


 , Uwork =




2 −2 4 2
0 1 −3 1
0 3 −11 7
0 2 −4 −2




and p =




1
2
3
4




But now the largest element in the working portion of the second column
is on the third row. So we must interchange

(1) The second and third rows of Uwork.
(2) The subdiagonal elements in the second and third rows of Lwork.
(3) The second and third rows of p. to give

Lwork =




1 0 0 0
.5 1 0 0

−.5 0 1 0
.5 0 0 1


 , Uwork =




2 −2 4 2
0 3 −11 7
0 1 −3 1
0 2 −4 −2




and p =




1
3
2
4




2 - 1

solution:

Then we can eliminate in the second column of Uwork. Emulating a three-digit,
rounding machine, this means




2 −2 4 2
0 3 −11 7
0 1 −3 1
0 2 −4 −2




R3 − (.333)R2

R4 − (.667)R2

=⇒




2 −2 4 2
0 3 −11 7
0 0 0.660 −1.33
0 0 3.34 −6.67




Note we have to be a little “delicate” here to accurately simulate the specified
machine. For example, to update the element in the (3, 3) position, we should
compute:

−3.00 −
−3.663︷ ︸︸ ︷

(.333) ∗ (−11.0) = −3.00 + 3.66 = .660

After we also update the corresponding elements of Lwork, we have:

Lwork =




1 0 0 0
.5 1 0 0

−.5 0.333 1 0
.5 0.667 0 1


 and Uwork =




2 −2 4 2
0 3 −11 7
0 0 0.660 −1.33
0 0 3.34 −6.67




Next we must eliminate in the third column. But, again, the largest element
in the working portion of that column is not on the diagonal. So we must first
interchange :

(1) The third and fourth rows of Uwork.
(2) The subdiagonal elements in the third and fourth rows of Lwork.
(3) The third and fourth rows of p.

This yields:

Lwork =




1 0 0 0
.5 1 0 0
.5 0.667 1 0

−.5 0.333 0 1


 , Uwork =




2 −2 4 2
0 3 −11 7
0 0 3.34 −6.67
0 0 0.660 −1.33




and p =




1
3
4
2




2 - 2

solution:

Now we can proceed with elimination:




2 −2 4 2
0 3 −11 7
0 0 3.34 −6.67
0 0 0.660 −1.33




R4 − (0.198)R3

=⇒




2 −2 4 2
0 3 −11 7
0 0 3.34 −6.67
0 0 0 −0.0100




and so now we can fill in the final element in

Lwork =




1 0 0 0
.5 1 0 0
.5 0.667 1 0

−.5 0.333 0.198 1




Therefore PA = LU where

P =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , L =




1 0 0 0
.5 1 0 0
.5 0.667 1 0

−.5 0.333 0.198 1




and

U =




2 −2 4 2
0 3 −11 7
0 0 3.34 −6.67
0 0 0 −0.0100




b. Based on your computations in part a, do you think this matrix is well-conditioned
for a three digit machine?

solution:

Despite the use of partial pivoting, we still have a “small” (order of mag-
nitidue of three-digit machine precision) pivot in L. Since a zero pivot would
connote a singular matrix, this small pivot implies that A is nearly singular.
Therefore, we expect this matrix to be ill-conditioned in a three-digit machine.

2 - 3

3. (30 points) Consider the matrix:

A =




1 2 −3
−1 5 1

2 3 −1




Five iterations of the power method without normalization after each step have produced:

x(5) =




457
4520
2315




Conduct one more iteration of the method, and estimate both the dominant eigenvalue
and its associated eigenvector.

solution:

Although not necessary (since eigenvectors are unique only up to direction),
we will normalize at this point, using the infinity norm:

x(5) =
x(5)

4520
=




0.1011
1.0000
0.5122




Now do one more iteration of the power method:

x(6) = Ax(5) =




1 2 −3
−1 5 1

2 3 −1







0.1011
1.0000
0.5122


 =




0.5646
5.4111
2.6900




At this point, we may or may not normalize again. We choose to:

x(6) =
x(6)

5.4111
=




0.1043
1.0000
0.4971




The eigenvalue is now best estimated using the Rayleigh quotient:

R =
x(6)T

Ax(6)

x(6)T x(6)

Note

Ax(6) =




0.6129
5.3928
2.7115


 =⇒ x(6)T

Ax(6) = 6.8048

3 - 1

solution:

and
x(6)T

x(6) = 1.2580 =⇒ R =
6.8048
1.2580

= 5.4090

Therefore

λ1 = 5.4090 and q(1) =




0.1043
1.0000
0.4971




3 - 2

4. (35 points) a. Perform two iterations of the Gauss-Seidel method for the solution of:



8 1 −2
0 4 1

−2 0 10


x =




4
1

−9




starting with

x(0) =




0
0
0




solution:

The Gauss-Seidel algorithm for this system can be formulated by:
(i) Moving the off-diagonal terms to the right-hand side of the equation,
(ii) Dividing each equation by the diagonal coefficient
(iii) Replacing the above-diagonal terms on the the right by their values from

the previous iteration, and
(iv) Replacing the below-diagonal terms on the right by their values from the

current iteration
i.e., for this system:

x
(k+1)
1 = − 1

8
x

(k)
2 + 1

4
x

(k)
3 + 1

2

x
(k+1)
2 = − 1

4
x

(k)
3 + 1

4

x
(k+1)
3 = 1

5x
(k+1)
1 − 9

10

Proceeding

x
(1)
1 = − 1

8
x

(0)
2 + 1

4
x

(0)
3 + 1

2

x
(1)
2 = − 1

4
x

(0)
3 + 1

4

x
(1)
3 = 1

5
x

(1)
1 − 9

10

or
x

(1)
1 = − 1

8 (0) + 1
4(0) + 1

2 = 0.5000

x
(1)
2 = − 1

4(0) + 1
4 = 0.2500

x
(1)
3 = 1

5(0.5000) − 9
10 = −0.8000

4 - 1

solution:

or

x(1) =




0.5000
0.2500

−0.8000




For the next iteration:

x
(2)
1 = − 1

8x
(1)
2 + 1

4x
(1)
3 + 1

2

x
(2)
2 = − 1

4x
(1)
3 + 1

4

x
(2)
3 = 1

5x
(2)
1 − 9

10

or

x
(2)
1 = − 1

8 (0.2500) + 1
4 (−0.8000) + 1

2 = 0.2687

x
(2)
2 = − 1

4 (−0.8000) + 1
4 = 0.4500

x
(2)
3 = 1

5 (0.2687) − 9
10 = −0.8463

Therefore

x(2) =




0.2687
0.4500

−0.8463




(Note the exact solution is:

x =




0.228476 . . .
0.463576 . . .

−0.854304 . . .




and so our iterative solution is already not to bad.

4 - 2

b. Was Gauss-Seidel a ”good” choice for this problem? Briefly explain your answer.

solution:

Probably not, at least assuming that the criteria for “best” require find-
ing a reasonably correct solution (effectiveness) with the minimum number of
computations (efficiency). This is neither a large nor a sparse problem. Gaus-
sian Elimination would get the exact solution in about nineteen flops. These
two iterations have already cost about twenty-one flops, and so far we only
have answers that are accurate to one to two significant digits. The mere fact
that A is diagonally dominant here, and therefore convergence is guaranteed,
does not alone make an iterative method a “good” choice unless your explicit
criterion for good is that the algorithm produces a reasonably correct solution
irrespective of cost.

4 - 3

5. (30 points) Consider the matrix

A =




1 1
ε 0
0 ε




a. Show that the singular values of this matrix are exactly σ1 =
√

2 + ε2 and σ2 = ε.
(Do not do the entire singular value decomposition!)

solution:

By definition, the singular values of A are the square roots of the eigen-
values of AH A. So first compute

AH A =
[

1 ε 0
1 0 ε

] 


1 1
ε 0
0 ε


 =

[
1 + ε2 1

1 1 + ε2

]

Then, if σi are the singular values of A, the eigenvalues of this matrix must
be λ1 = 2 + ε2 and λ2 = ε2. So check:

AH A − (2 + ε2)I ==
[

−1 1
1 −1

]

which is clearly singular. Similarly,

AH A − ε2I ==
[

1 1
1 1

]

which is also obviously singular. Therefore the given values are the singular
values of A.

b. Suppose ε is a sufficiently small number that, in some computers, because of round-
off errors, the quantity 1 + ε2 actually evaluates to 1. How do the numerically-computed
singular values then differ from the actual ones.

solution:

In this case,

fl
(
AH A

)
= fl

([
1 + ε2 1

1 1 + ε2

])
=

[
1 1
1 1

]

5 - 1

solution:

Since

det
(
fl

(
AH A

)
− λI

)
= det

[
1 − λ 1

1 1 − λ

]
= λ2 − 2λ

The eigenvalues of this matrix are easily shown to be

λ̃1 = 2 and λ̃2 = 0

Therefore the computed singular values will be:

σ̃1 =
√

2 and σ̃2 = 0

In otherwords, this matrix is numerically singular.

c. What is the actual condition number of A (in the Euclidean norm). Based on this
result, is the result you obtained in part b. above reasonable?

solution:

The condition number of the original matrix, in the Euclidean norm, is
given by:

κ(A) =
σ1

σ2
=

√
2 + ε2

ε

From this, it is obvious that, for “small” ε,

κ(A) .=
√

2
ε

Therefore, the matrix will be very ill-conditioned, i.e. nearly singular in this
case. Therefore, the fact that round-off errors can make it exactly singular
should not be that surprising.

5 - 2

6. (30 points) A 5000 × 1 vector x must undergo a projection given by:

(
I −PPH

)
x

where P is a 5000 × 3 matrix, the first fourty-two hundred rows of which are identically
zero. The result will be stored in the a new location associated with the vector y. Give
no more than four lines of MATLAB code that will accomplish this in a highly efficient
manner. Estimate the number of flops and amount of additional storage required by your
code.

solution:

Note that if we, conceptually, partition P and x as follows:

P =




0
. . .
P21


 and x =




x1

· · ·
x2




where P21 is 800 × 3, etc., then we see that:

y =
(
I −PPH

)
x =




x1

· · ·
x2


 −




0
. . .
P21







[
0

... PH
21

]



x1

· · ·
x2






=




x1

· · ·
x2


 −




0
. . .
P21




(
P21

H x2

)

=




x1

.
x2 −P21

(
P21

H x2

)




Probably the most efficient MATLAB code for this operation would be

y = x

v = P(4201:5000,4201:5000)′∗x(4201:5000)

y(4201:5000) = y(4201:5000) ...

- P(4201:5000,4201:5000)∗v

6 - 1

solution:

Implementing this method will require:
(1) Multiplying one 3 × 800 matrix (PH

21) by an 800 × 1 vector (x2), at a cost
of approximately 4800 (= 2 × 800 × 3) flops, plus

(2) Multiplying the resulting 3×1 vector on the left by an 800×3 matrix (P21,
at the cost of another approximately 4800 flops, then finally

(3) Subtracting two 800 × 1 vectors, at the cost of 800 flops.
Total cost = 10,400 flops (approximately).

This code would requie, besides the 5000 location needed to hold y, an
additional 800 storage locations to hold v, plus and up to an additional 800
temporary storage locations to hold P21v. This cost is negligible.

6 - 2

